Counting Significant Figures ("Sig Figs")

The number of significant figures of a measurement is the number of certain digits, plus one uncertain digit. There are 2 rules to recall.

The graduated cylinder is read as 2.65 mL . Here, the 5 is an

1. All nonzero digits are significant.

a. 5.37 cm
(3) (three "sig figs" here, the 7 is the uncertain digit)
b. 61.294 g
(5) (the 4 is uncertain, mass is likely between 61.293 and 61.295)
2. Starting with the left-most nonzero digit, count it and all remaining digits to the right (aside from Ambiguity Rule below).
1.00200 mg (6)
$\underline{2} .098 \times 10^{8} \mathrm{~m}$
(4)
0.000205 km (3)
$\underline{2} 0.980 \times 10^{-8} \mathrm{~m}$

Ambiguity Rule - What about 500 g? How many significant digits? 1 or 3 ?
To be perfectly clear, use a decimal point or scientific notation.*
For 3 sig. figs. use: $500 . \mathrm{g}$ or $5.00 \times 10^{2} \mathrm{~g}$
If no decimal version of the number is available, do NOT count the trailing zeros.
For " 500 g " the zeros are NOT significant; there is just 1 sig. fig.

*Scientific Notation has only $\underline{1}$ non-zero digit left of the decimal. (no ambiguity)

$6.000 \times 10^{2} \mathrm{~km}$ (4)
2.4 grams
(2)
$\underline{3} .00750 \times 10^{-4} \mathrm{~m}$

Optional: You may encounter a longer list of sig fig rules with jargon like this:
a. Zeros preceding the first nonzero digit in a number are NEVER significant. "Leading" or "Placeholder" zeros 0.000025 m
b. Zeros between nonzero digits are significant.
"Captive" zeros
1.002 mm
c. Zeros after the decimal point at the end of a number are significant.
"Trailing" zeros
8.00 mL
(3)

